Beam Condition Monitoring with Diamonds at CDF

The CDF diamond group:

Peter Dong, Charlie Schrupp, Rainer Wallny (UCLA)

Anna Sfyrla (University of Geneva)

Ricardo Eusebi, Rick Tesarek (Fermilab)

Fermilab Users Meeting

Thursday, June 7, 2007

The Tevatron

- The world's highest-energy operation accelerator, with center-of-mass energy 1.96 TeV
- Stored beam energy of ~1.6
 MJ equivalent to a six-ton truck traveling at 60 mph, or two jelly donuts (Mike Syphers)
- In the last few years, rapidly increasing luminosity, thanks to the ongoing efforts of the Accelerator Division.
- The key to CDF and D0's physics results!

With great power comes...

- A powerful particle beam is potentially dangerous
- Sometimes things go wrong
 - Separator spark
 - Kicker prefire
 - RF station trip
 - Incorrect tuning
 - Electronics failure
- Unstable beam can damage Tevatron system components
- Beam must be aborted as soon as instability is detected

CDF and the silicon detector

- Multi-purpose particle detector
- Silicon detector is key part, but also very delicate:
 - Close to beam (1.5 cm)
 - Vulnerable to beam accidents
 - Not accessible for replacement or maintenance
- Silicon must be protected to keep taking good data!

Current abort system

- Based on beam loss monitors (BLMs): argon-filled ionization chambers
- FIFO electronics with 210-μs bin width (10 revolutions of beam)
- Location limited by BLM size: very far (4.3m) from silicon detector
- 210 µs is too long; most "dirty" aborts look like this
- The system should be faster and closer to the silicon
- This is ideal for diamonds

Why diamond?

Electron mobility $[cm^2/Vs]$ 1450 2200 Hole mobility $[cm^2/Vs]$ 500 1600 Saturation velocity $[cm/s]$ 0.8x10 ⁷ 2x10 ⁷ Breakdown field $[V/m]$ 3x10 ⁵ 2.2x10 ⁷ Resistivity $[\Omega \ cm]$ 2x10 ⁵ >10 ¹³ Dielectric constant 11.9 5.7 \longrightarrow Low capacitance, noise e-h creation energy $[eV]$ 13-20 43 Ave e-h pairs per MIP per μm 89 36 Electron mobility $[cm^2/Vs]$ 500 Fast signal collection Fast signal collection Fast signal collection Smaller signals		Silicon	Diamond	
Hole mobility $[cm^2/Vs]$ 500 1600 Saturation velocity $[cm/s]$ 0.8x10 ⁷ 2x10 ⁷ Breakdown field $[V/m]$ 3x10 ⁵ 2.2x10 ⁷ Resistivity $[\Omega \ cm]$ 2x10 ⁵ >10 ¹³ Dielectric constant 11.9 5.7 \longrightarrow Low capacitance, noise e-h creation energy $[eV]$ 13-20 43 Ave e-h pairs per MIP per μm 89 36 Fast signal collection Fast signal collection Fast signal collection Fast signal collection Saturation velocity $[cm/s]$ 42.2x10 ⁷ \longrightarrow Low capacitance, noise \longrightarrow High radiation hardness Smaller signals	Band gap [eV]	1.12	5.45	→ Low I _{leakage} , shot noise
Saturation velocity [cm/s] $0.8x10^7$ $2x10^7$ Breakdown field [V/m] $3x10^5$ $2.2x10^7$ Resistivity [Ω cm] $2x10^5$ $>10^{13}$ Dielectric constant 11.9 5.7 Displacement energy [eV] $13-20$ 43 e-h creation energy [eV] 3.6 13 Ave e-h pairs per MIP per μ m 89 36 Smaller signals	Electron mobility [cm²/Vs]	1450	2200	
Breakdown field [V/m] $3x10^5$ $2.2x10^7$ Resistivity [Ω cm] $2x10^5$ $>10^{13}$ Dielectric constant 11.9 5.7 Displacement energy [eV] $13-20$ 43 e-h creation energy [eV] 3.6 13 Ave e-h pairs per MIP per μm 89 36 Smaller signals	Hole mobility [cm²/Vs]	500	1600	Fast signal collection
Resistivity [Ω cm] 2x10 ⁵ >10 ¹³ Dielectric constant 11.9 5.7 \longrightarrow Low capacitance, noise 13-20 43 \longrightarrow High radiation hardness e-h creation energy [eV] 3.6 13 Ave e-h pairs per MIP per μ m 89 36 \longrightarrow Smaller signals	Saturation velocity [cm/s]	0.8x10 ⁷	2x10 ⁷	
Dielectric constant 11.9 5.7 Displacement energy [eV] 13-20 43 e-h creation energy [eV] 3.6 Ave e-h pairs per MIP per μm 89 5.7 Low capacitance, noise High radiation hardnes Smaller signals	Breakdown field [V/m]	3x10 ⁵	2.2x10 ⁷	
Displacement energy [eV] 13-20 43 e-h creation energy [eV] 3.6 13 Ave e-h pairs per MIP per μm 89 36 High radiation hardnes Smaller signals	Resistivity [Ω cm]	2x10 ⁵	>10 ¹³	
e-h creation energy [eV] 3.6 13 Ave e-h pairs per MIP per μm 89 36 Smaller signals	Dielectric constant	11.9	5.7	→ Low capacitance, noise
Ave e-h pairs per MIP per µm 89 36 Smaller signals	Displacement energy [eV]	13-20	43	→ High radiation hardness
	e-h creation energy [eV]	3.6	13	
Objects call disk from 1 full OFO	Ave e-h pairs per MIP per µm	89	36	Smaller signals
Charge coil. dist. [µm] full ~250	Charge coll. dist. [µm]	full	~250	

+ high thermal conductivity:
Room temperature operation

Polycrystalline CVD diamond

- Production studied by CERN RD42 collaboration
- Diamonds grown by chemical vapor deposition (CVD) process
- Now routinely grown more than 12 cm in diameter and 2 mm thick
- Finite charge collection distance (CCD)
 - Due to charge trapping (grain boundaries, impurities, etc.)
- Typical CCD ranges from 250 to 310µm
- CCD saturates at around 1 V/µm

Diamond detectors

- Bias voltage applied across diamond
- ~500V for 500µm thick detector
- Charged particles generate electron-hole pairs that drift apart in electric field to electrodes
- DC-coupled radiation sensor:
 - Measure induced current
 - Leakage current of a few pA
- Acts as a solid-state ionization chamber

8

The CDF diamond BCM system

- 8 diamonds in the tracking volume for beam monitoring and aborts (blue dots): r = 2 cm |z| = 1.7 m
- 5 diamonds near the current BLMs for calibration (orange dots): r = 10.7 cm |z| = 4.3 m

Location of diamond sensors

 1-cm² diamonds with aluminum-based metallization, in G10 package with copper shielding – piggybacked on ATLAS diamond production.

 85-m triaxial cable reads out to counting room

Calibration station

DAQ system

- **Borrowed from Tevatron BLM** upgrade (thanks to **AD** Instrumentation and PPD EE departments!)
- Integrates on multiple time constants for abort comparisons.
- Makes a reading every 21 μs (one **Tevatron revolution**)
- Provides turn-by-turn data after Tevatron abort.

Timing card, abort card

Interlock card

Shot setup: taking the pulse of the Tevatron

Inner tracking diamonds are closer to the beam and have more sensitivity to accelerator events.

Online monitoring

- Monitor diamonds through Accelerator Control Network (ACNET).
- Data logged at 1 Hz
- Can see real-time plots at a few Hz

Buffer dump in case of abort

- Capable of seeing fine time structure in beam incidents.
- Should be able to pull the abort earlier.

Abort system

- Diamond abort system (being commissioned) allows the diamond system to pull Tevatron aborts when radiation is too high.
 - Uses Tevatron BLM abort card.
 - Can abort on both instantaneous and integrated doses.
 - Can assign multiplicity requirements for each abort threshold.
- Additional electronics prevent accidental aborts and protect the detector:
 - High voltage interlock that drops in case of flammable gas alarm.
 - Solenoid interlock prevents abort from being pulled when the solenoid is not at full field.

High-loss abort

- 20-µs buffer from a quench during scraping
- If diamonds had been used in abort, could have pulled it ~500 μs earlier
- Could potentially have avoided magnet quench, protecting hardware and reducing radiation damage to sensitive detectors.

Conclusions

- Diamond is now well established as a detector material in high-energy physics applications.
- CDF has the world's largest operational diamond BCM system, and the only one at a hadron collider
 - Can resolve 20-µs time structures using unamplified
 DC-coupled sensors
 - Beam abort capability nearly completed readiness review this month!
- LHC experiments have built or planned similar systems

Acknowledgements

- Many, many thanks to all people who helped us with this project!
- CDF: Dervin Allen, Mary Convery, Mike Lindgren, Aseet Mukherjee, Rob Roser, Willis Sakumoto, Ken Schultz, Peter Wilson, Bob Wagner, George Wyatt ...
- BLM Upgrade Project: Al Bambaugh, Charlie Briegel, David Capista, Craig Drennan, Brian Fellenz, Kelly Knickerbocker, Brian Hendricks, Randy Thurman-Keup, Jonathan Lewis, Marv Olson, Dean Still, Michael Utes, Jin-Yuan Wu, Ray Yarema ...
- RD42: Harris Kagan
- And anyone else we missed thanks!